835 research outputs found

    Fast Desynchronization For Decentralized Multichannel Medium Access Control

    Get PDF
    Distributed desynchronization algorithms are key to wireless sensor networks as they allow for medium access control in a decentralized manner. In this paper, we view desynchronization primitives as iterative methods that solve optimization problems. In particular, by formalizing a well established desynchronization algorithm as a gradient descent method, we establish novel upper bounds on the number of iterations required to reach convergence. Moreover, by using Nesterov's accelerated gradient method, we propose a novel desynchronization primitive that provides for faster convergence to the steady state. Importantly, we propose a novel algorithm that leads to decentralized time-synchronous multichannel TDMA coordination by formulating this task as an optimization problem. Our simulations and experiments on a densely-connected IEEE 802.15.4-based wireless sensor network demonstrate that our scheme provides for faster convergence to the steady state, robustness to hidden nodes, higher network throughput and comparable power dissipation with respect to the recently standardized IEEE 802.15.4e-2012 time-synchronized channel hopping (TSCH) scheme.Comment: to appear in IEEE Transactions on Communication

    Multi-modal dictionary learning for image separation with application in art investigation

    Get PDF
    In support of art investigation, we propose a new source separation method that unmixes a single X-ray scan acquired from double-sided paintings. In this problem, the X-ray signals to be separated have similar morphological characteristics, which brings previous source separation methods to their limits. Our solution is to use photographs taken from the front and back-side of the panel to drive the separation process. The crux of our approach relies on the coupling of the two imaging modalities (photographs and X-rays) using a novel coupled dictionary learning framework able to capture both common and disparate features across the modalities using parsimonious representations; the common component models features shared by the multi-modal images, whereas the innovation component captures modality-specific information. As such, our model enables the formulation of appropriately regularized convex optimization procedures that lead to the accurate separation of the X-rays. Our dictionary learning framework can be tailored both to a single- and a multi-scale framework, with the latter leading to a significant performance improvement. Moreover, to improve further on the visual quality of the separated images, we propose to train coupled dictionaries that ignore certain parts of the painting corresponding to craquelure. Experimentation on synthetic and real data - taken from digital acquisition of the Ghent Altarpiece (1432) - confirms the superiority of our method against the state-of-the-art morphological component analysis technique that uses either fixed or trained dictionaries to perform image separation.Comment: submitted to IEEE Transactions on Images Processin

    Improved Convergence Bounds For Operator Splitting Algorithms With Rare Extreme Errors

    Full text link
    In this paper, we improve upon our previous work[24,22] and establish convergence bounds on the objective function values of approximate proximal-gradient descent (AxPGD), approximate accelerated proximal-gradient descent (AxAPGD) and approximate proximal ADMM (AxWLM-ADMM) schemes. We consider approximation errors that manifest rare extreme events and we propagate their effects through iterations. We establish probabilistic asymptotic and non-asymptotic convergence bounds as functions of the range (upper/lower bounds) and variance of approximation errors. We use the derived bound to assess AxPGD in a sparse model predictive control of a spacecraft system and compare its accuracy with previously derived bounds

    A Low-Power Hardware-Friendly Optimisation Algorithm With Absolute Numerical Stability and Convergence Guarantees

    Full text link
    We propose Dual-Feedback Generalized Proximal Gradient Descent (DFGPGD) as a new, hardware-friendly, operator splitting algorithm. We then establish convergence guarantees under approximate computational errors and we derive theoretical criteria for the numerical stability of DFGPGD based on absolute stability of dynamical systems. We also propose a new generalized proximal ADMM that can be used to instantiate most of existing proximal-based composite optimization solvers. We implement DFGPGD and ADMM on FPGA ZCU106 board and compare them in light of FPGA's timing as well as resource utilization and power efficiency. We also perform a full-stack, application-to-hardware, comparison between approximate versions of DFGPGD and ADMM based on dynamic power/error rate trade-off, which is a new hardware-application combined metric

    Blind multiuser equalization using a PARAFAC-subspace spproach

    Get PDF
    - Dans cet article, nous utilisons la décomposition tensorielle PARAFAC (PARAllel FACtors) en vue de développer une nouvelle approche pour l'égalisation aveugle multi-utilisateur dans le cadre des systèmes de communications sans fil. Le système considéré est basé sur l'utilisation conjointe d'un réseau d'antennes et d'un sur-échantillonnage à la réception. Nous proposons tout d'abord un modèle tridimensionnel du type PARAFAC pour le signal reçu, dont les 3 dimensions sont l'espace, le temps et le sur-échantillonnage. Ensuite, nous présentons un nouveau récepteur aveugle multi-utilisateur pour la séparation des signaux et pour l'égalisation. Le récepteur proposé combine une modélisation PARAFAC, une méthode de sous-espace et l'exploitation de la propriété d'alphabet fini des symboles transmis. Des résultats de simulations sont montrés pour illustrer la performance du récepteur aveugle proposé

    Adherence to treatment in allergic rhinitis using mobile technology. The MASK Study

    Get PDF
    Background: Mobile technology may help to better understand the adherence to treatment. MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centred ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App. Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from 1 January 2016 to 1 August 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach. Results: A total of 12143 users were registered. A total of 6949 users reported at least one VAS data recording. Among them, 1887 users reported >= 7 VAS data. About 1195 subjects were included in the analysis of adherence. One hundred and thirty-six (11.28%) users were adherent (MPR >= 70% and PDC = 70% and PDC = 1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous vs on-demand treatment for allergic rhinitis symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This also represents a novel approach for analysing medication-taking behaviour in a real-world setting.Peer reviewe

    Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018) : Change management in allergic rhinitis and asthma multimorbidity using mobile technology

    Get PDF
    Allergic Rhinitis and its Impact on Asthma (ARIA) has evolved from a guideline by using the best approach to integrated care pathways using mobile technology in patients with allergic rhinitis (AR) and asthma multimorbidity. The proposed next phase of ARIA is change management, with the aim of providing an active and healthy life to patients with rhinitis and to those with asthma multimorbidity across the lifecycle irrespective of their sex or socioeconomic status to reduce health and social inequities incurred by the disease. ARIA has followed the 8-step model of Kotter to assess and implement the effect of rhinitis on asthma multimorbidity and to propose multimorbid guidelines. A second change management strategy is proposed by ARIA Phase 4 to increase self-medication and shared decision making in rhinitis and asthma multimorbidity. An innovation of ARIA has been the development and validation of information technology evidence-based tools (Mobile Airways Sentinel Network [MASK]) that can inform patient decisions on the basis of a self-care plan proposed by the health care professional.Peer reviewe
    corecore